Bls: Soal integral
Pake tulisan biasa aja ya, mas...:))
Aku rada gaptek kalo harus pake fitur penulisan yang sudah disediakan itu... 1. sin^4(x) = [sin^2(x)]^2 = [(1 -cos(2x)/2)]^2 = 1/4[1 + cos^2(2x) - 2cos(2x)] = 1/4[1 - 2cos(2x) + (1 + cos(4x)/2 ] = (1/4) - (1/2)cos(2x) + (1/8) + (1/8)cos(4x) = (3/8) - (1/2)cos(2x) + (1/8)cos(4x) maka ∫sin^4(x)dx = 3/8∫dx - 1/2∫cos(2x) dx + 1/8∫cos(4x) dx ∫sin^4(x)dx = (3/8)x - (1/2)sin(2x)(1/2) + (1/8)sin(4x)(1/4) + C ∫sin^4(x)dx = (3/8)x - (1/4)sin(2x) + (1/32)sin(4x) + C 2. ∫ cos^4(x) dx = ∫ (cos^2x)^2 dx karena cos^2x = (1/2)[1 + cos(2x)], maka menjadi ∫ {(1/2)[1 + cos(2x)]}^2 dx = ∫ (1/4)[1 + cos(2x)]^2 dx ∫ (1/4)[1 + 2cos(2x) + cos^2(2x)] dx = (1/4) ∫ dx + (1/4) 2 ∫ cos(2x) + (1/4) ∫ cos^2(2x) dx = (1/4) ∫ dx + (1/2) ∫ cos(2x) + (1/4) ∫ cos^2(2x) dx = (1/4)x + (1/2) (1/2)sin(2x) + (1/4) ∫ cos^2(2x) dx = (1/4)x + (1/4)sin(2x) + (1/4) ∫ cos^2(2x) dx dari hasil di atas, maka cos^2(2x) = (1/2){1 + cos[2(2x)]} = (1/2)[1 + cos(4x)] oleh karena itu, (1/4)x + (1/4)sin(2x) + (1/4) ∫ (1/2)[1 + cos(4x)] dx = (1/4)x + (1/4)sin(2x) + (1/4)(1/2) ∫ [1 + cos(4x)] dx = (1/4)x + (1/4)sin(2x) + (1/8) ∫ dx + (1/8) ∫ cos(4x) dx = (1/4)x + (1/4)sin(2x) + (1/8)x + (1/8) (1/4)sin(4x) + C = [(1 + 2)/8]x + (1/4)sin(2x) + (1/32)sin(4x) + C Maka, ∫ cos^4(x) dx = (3/8)x + (1/4)sin(2x) + (1/32)sin(4x) + C -dipi-
|
Bls: Soal integral
ih lihat jawabannya non dipi aja kau udah puyeng..... :D
|
|
Bls: Soal integral
Jadi kangen masa sma dl,
Krn guru Mat gw cinta bgt ma 'Integral' khususny 'Integral Parsial'.. Dohh, tiap hr pr Integral itu berlembar2 boo... ^^
|
Bls: Soal integral
pusing
|
Re: Soal integral
waduh ga ngerti
|
Thread Tools | Search this Thread |
|
Similar Threads | ||||
Thread | Original Poster | Forum | Replies | |
Soal-soal ulangan umum Tehnologi informasi dan komunikasi (1) | Gia_Viana | SMA/SMK/MA Kelas 11 | 19 | |
Pendidikan Jasmani soal-soal semester genap/gasal | Gia_Viana | SMA/SMK/MA Kelas 11 | 16 |
Pengumuman Penting |
- Pengumuman selengkapnya di Forum Pengumuman & Saran |